Abraham Joy

Abraham Joy is an associate professor of Polymer Science at the University of Akron. He obtained his Ph.D. in chemistry from Tulane University, working under the mentorship of Prof. V. Ramamurthy on organic asymmetric photoreactions. Following his doctoral work, he carried out his postdoctoral work at the Georgia Institute of Technology with Prof. Gary Schuster, working on charge migration in synthetic oligonucleotides. Subsequently, he was an NIH Ruth Kirschstein postdoctoral fellow at Rutgers University and Univ. Pennsylvania working with Prof. Joachim Kohn and Prof. Christopher Chen. During this time, he worked on designing biomaterials for modulating cellular functions. He is a recipient of the 3M Non-tenured faculty award and an NSF CAREER award. In early 2016, he became an associate professor with tenure.
E-mail: abraham@uakron.edu

Kaushik Mishra

B. Tech, Polymer Science and Engineering, Institute of Chemical Technology, 2010

E-mail: km75@zips.uakron.edu

PhD Candidate

My primary research pursuits include bottom-up synthesis of functional monomers for degradable block copolymers and synthesis of novel photo-responsive adhesives. My research interests are broad but meet at the intersection of functional organic materials, polymer chemistry and biomaterials.

Tanmay Jain

B. Tech, Surface Coating Technology, Institute of Chemical Technology, 2014

E-mail: tpj13@zips.uakron.edu

PhD Candidate

 

 I am trying to understand the effect of such bioactive molecules on the quality of 3D printed structures. I am also trying to correlate the bulk material properties of a polymer to its 3D printing parameters to achieve good quality 3D prints.

Qianhui Liu

M.S., Polymer Science, University of Akron, 2015

E-mail: ql17@zips.uakron.edu

PhD Candidate

My research focuses on tunable functionalized polyesters used as biomaterials. The polyester was synthesized through carbodiimide-mediated coupling of diols and diacids and via changing various functional pendant groups as well as different length of diacid, corresponding properties of the polyester were studied systematically.

Megan Cruz

B.S., Biochemistry, California Polytechnic State University, 2015

E-mail: mac350@zips.uakron.edu

PhD Candidate

My research focuses on the synthesis of biodegradable thermoresponsive polyesters (TR-PEs) for biomedical applications. The TR‑PEs form coacervates above their LCST, which makes them attractive candidates for applications such as controlled drug release and degradable scaffolds.

Nicholas Nun

B.S. Chemistry

E-mail: nrn16@zips.uakron.edu

PhD Candidate

My research focuses primarily on the synthesis and characterization of photoresponsive polymers.  Most commonly I incorporate alkoxyphenacyl or nitrobenzyl chromophores into my polymers to enhance degradation or alter mechanical properties.  I am also performing research on the functionalization of polyurethanes for use in biomedical applications.

Amal Narayanan

M. S. in Chemistry, IISER Kolkata, 2015

E-mail: an75@zips.uakron.edu

PhD Candidate

 I am presently looking at the mussel-inspired, hydrolytically-degradable wet-adhesives with unconventional cohesive and adhesive components. My research involves synthesis of innovative biomaterials and spectroscopic analysis of the decisive adhesion components both in bulk and at the surface.

Mangaldeep Kundu

M.S. in Chemistry, University of Calcutta, 2015

E-mail: mk199@zips.uakron.edu

PhD Candidate

I am interested in synthesizing biodegradable, thermoresponsive polyesters suitable for drug and protein delivery applications. Another aspect of the project involves building a framework for understanding protein-polymer interactions within coacervates. My area of research includes but not limited to polymer synthesis, 1D and 2D NMR spectroscopy, protein expression and purification.

Chinnapatch Tantisuwanno

B. S. Chemistry, Prince of Songkla  University, Thailand

E-mail: ct75@zips.uakron.edu

PhD Candidate

I am interested in cationic polyurethane structure-antimicrobial and -toxicity relationships. I am also trying to understand the synergistic effect of these polymers with antibiotic in gram negative bacteria.

Yen-Ming Tseng

M. S. in Chemistry, National Tsing Hua University, 2011

E-mail: yt26@zips.uakron.edu

PhD Candidate

My research focuses on polyurethane polymers which can be further applied to 3D printing and adhesives.

Apoorva Vishwakarma

B.Tech., Polymer Science and Technology, Indian Institute of Technology, Roorkee, 2016

E-mail: av102@zips.uakron.edu

PhD Candidate

I’m particularly interested in polymers that are inherently antimicrobial and effective against microbial biofilms. I’m currently working on understanding the structure-activity relationships of such polymers and modifying them to be useful in eradicating clinically relevant infections.

Xinhao Liu

M.S., Polymer Science, University of Akron, 2018

E-mail: xl60@zips.uakron.edu

PhD Candidate

My research aims to the synthesize the nanoparticles which enhance the sensitivity of MRI contrast agents. Based on the monomer in lab, introducing the crosslinking groups can lead to form the core of the nanoparticle. By controlling the composition of other monomers, it contributes to load of the contrast agents and shorten the relation of contrast agents.

Francis Dang

B. S. Biological Sciences, University of California Irvine

E-mail: fwd4@zips.uakron.edu

PhD Candidate

Polymer-protein conjugates

Deliris N Ortiz

B. S. Physics Applied to Electronics, University of Puerto Rico – Humacao, 2017

E-mail: dno5@zips.uakron.edu

PhD Candidate

3D printing is an area with high demand for development of novel engineered platforms that manipulate biology for production of programmed advanced materials. Hydrogels have been used to incorporate and 3D print bacteria, but when it comes to mechanical properties, they do not meet the expectations.  That is why my research focus in the implementation of bacteria to a polymer solution, to encapsulate bacteria in a 3D print shape. In order to do that it is important to understand the mechanics of the bacteria and polymer for separate and combined together, which is also a topic where I do research on.  

Joshua Menefee

B.S. Biochemistry, University of Akron 2020

E-mail: jrm234@zips.uakron.edu

Undergraduate Research Assistant

Currently I am focused on the synthesis of 3D printable polymers with adhesive properties. My hopes are to continue expanding my skills and knowledge while in Joy Lab. 

zixi
Zixi Chen

B.S. Polymer Science & Engineering, University of Donghua, 2019

E-mail: zc35@zips.uakron.edu

Master Student

I’m presently trying to synthesize high performance degradable underwater adhesive for wound dressings, skin grafts and some engineering applications. This kind of polymer can not only address the need of bulk mechanical strength, but also good tissue compability and non-toxicity.

IMG_0660
Jie Zhou

B.S. Polymer Science & Engineering , Sichuan University, 2020

E-mail: jz100@zips.uakron.edu

AMP Student

My research focuses on controlled drug release.